

SketchSpace: Designing Interactive
Behaviors with Passive Materials

Abstract
This paper presents SketchSpace, a system that allows
designers to interactively sketch [3] device’s interactive
behaviors by imbuing digital functionality to passive
materials. SketchSpace requires no augmentation of
the device itself, but instead it uses a depth-sensing
Kinect camera to simulate the use of hardware sensors
by using depth information to infer an object's three-
dimensional position, motion, proximity, shape,
deformations, and touch events on its surface. A
designer can map these inputs to desktop applications
in real-time and thus experiment with different
interactions. We showcase how SketchSpace can be
used to prototype two devices: from tilt sensitive mice
to bendable displays. In general, we discuss how this

simplifies the process of generating an interactive
device sketch and supports rapid exploration of design
solutions.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User
Interfaces. – Graphics User Interfaces

General Terms
Design, Human Factors

Keywords
Sketching user interfaces, rapid prototyping, depth
sensing camera.

Introduction
During the design process, industrial prototypes are
critical artifacts for innovation and collaboration. Of the
hundreds of prototypes a designer sculpts, few will
have interactive functionality. Bread boarding, as
designers refer to it, integrates hardware components
into a prototype to roughly approximate its final
interactive behavior. Although this approach is common
in practice, it is labor-intensive, impacts ergonomics,
and requires technical knowledge of embedded hard
devices.

Copyright is held by the author/owner(s).

CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.

ACM 978-1-4503-0268-5/11/05.

David Holman
Human Media Lab
Queen’s University
Kingston, ON
holman@cs.queensu.ca

Hrvoje Benko
Microsoft Research
One Microsoft Way
Redmond, Wa
benko@microsoft.com

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1987

What if a designer could explore the interactive
behavior of a device prior to having a working
prototype? In this way, we envision an interactive
sketching tool that is as seamless as working with
common design materials, such as tape or foam core,
to express a physical a design. Achieving this
interactively helps a designer experience a device
hands-on and, consequently, triggers the serendipitous
realizations arrived at with a concrete artifact [7].

With this in mind, we designed SketchSpace, a
lightweight environment that adds interactive behavior
to passive physical objects (see Figure 1). A designer
places an object in her workspace and works with a
prototype as if it actually had physical sensors. All input
sensing in SketchSpace is achieved using Microsoft’s
Kinect’s camera (see Figure 2). The depth data allows
SketchSpace to observe a broad set of inputs, ranging
from touch events on the object’s surface, orientation,
position, motion, proximity, and, among others, shape
deformations. Although these inputs are often
recognized using hardware sensors, a designer does
not have to find, attach, and work with physical
sensors. Using the depth data to infer virtual sensors
leaves the designer free to ideate, explore, and quickly
make interactive sketches.

This activity of quickly and inexpensively generating
numerous possible designs is referred to as sketching
[3]. Buxton distinguishes it from prototyping and
details how a sketch’s intentional roughness evokes
useful discussion and leads to better design solutions.
Unlike other design disciplines that operate primarily in
a spatial domain, interactive sketching introduces a
temporal dimension that complicates representing even
simple interactions. It is challenging —yet absolutely

necessary —for an interactive sketching tool to quickly
enumerate the design options from which to choose. To
do this, Buxton argues such a tool should enable a
designer to make quick, inexpensive, and disposable
sketches. SketchSpace explores exactly this area of
sketching interactive behaviors by using only physical
materials and a depth camera.

Related Work
Previous work such as d.tools [5], VoodoIO [13], the
Calder Toolkit [9], and BOXES [6] augment physical
prototypes with hardware sensors and provide high-
level toolkits that abstractly represent interaction to a
designer. This promotes ease of use and drastically
simplifies the work needed to rapidly prototype
hardware interfaces. It does not, however, minimize
the physical challenge of seamlessly integrating sensors
into a prototype. The time needed to find, fasten, and
fit numerous sensors is a barrier to quick and
disposable sketching [3]. Although iStuff Mobile [2]
addresses this problem using a single integrated sensor
that senses acceleration, tilt, and rotation, it assumes a
rigid mobile form factor that cannot sense touch.
SketchSpace, instead, removes the need for most
hardware sensors and uses the depth data to generate
virtual ones. This, unlike previous examples, permits
physical prototypes to be swapped without refitting
sensors to a new device and further supports rapid
design exploration.

DisplayObjects [1], unlike physical prototyping toolkits,
relies on motion capture to rapidly prototype foam
mockups that are rendered with projected content.
Similar to SketchSpace, this minimizes the use of
physical hardware sensors and requires only infrared
tracking markers on the mockup. Unlike SketchSpace,

Figure 1. A range of materials a
designer could work with using
SketchSpace. This includes everyday
objects (wood blocks, chopsticks, spoon,
baseball), deformable surfaces
(Mousepad), and plastic device
prototypes (mouse).

Figure 2. A Kinect camera hovers
over the designer’s workspace. Its
depth data is used to the track the
designer’s manipulations of a physical
prototype.

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1988

DisplayObjects’s motion tracking algorithms requires
the designer to build a virtual model of the mockup that
is input to the tracking engine. After this step, the
designer is free to explore aesthetic design by dragging
projected content from a physical palette and manually
placing it on the mockup. Although button presses are
supported, complex input behaviors that express
changes in a position or shape are not mapped to
interactions.

Design Concept
SketchSpace is motivated by observations of industrial
and interaction designers working at Microsoft
Hardware group. We interviewed two designers as they
worked through the design of novel computer input
devices (e.g., mice, remotes, or game controllers).
First, we observed the lead industrial designer as he
sculpted different form explorations for a novel
controller. We also interviewed the designer responsible
for the interaction techniques this controller would
exhibit and discussed the current practice of designing
interactions.

Both designers confirmed that working with a functional
device is increasingly important in their work. As the
interaction designer stated: “design fails when certain
parts aren’t evaluated.” The omission of a functioning
input device increases the likelihood of failure. Although
tools like Knörig’s Fritzing [8] can make bread boarding
easier, introducing a functional prototype into the
designer’s workflow can still be time consuming. If an
idea is too difficult to be explored or cannot be
represented, it will be avoided. Overall, the designers
wanted a sketching tool that is lightweight, easy to use,
and allows them to work together when iterating over
an interactive design.

SketchSpace System
Guided by these observations, we designed
SketchSpace to allow designers to more seamlessly
sketch interactive devices. The system positions a
depth sensing camera and projector above a designer’s
workspace (see Figure 2). The depth data is used to
track an object and make inferences about its input
behavior. The projector renders perspective correct
feedback to indicate that a passive object has
interactive behavior (see Figure 3). While manipulating
an object, a designer monitors its input behavior on
SketchSpace’s Mapping Panel (see Figure 4). From
these input values, the designer generates simple rules
that trigger interactive actions on a Desktop
application. For example, bending the corner of scrap
paper can be quickly mapped to trigger a page back in
a web browser as originally envisioned by Gallant et al.
[4]. Using SketchSpace in this way, the designer
iterates a device’s interactive potential.

Virtual Sensors
SketchSpace is capable of reporting the changes in
several object states in a form of a virtual sensor
stream. Our selection of virtual sensors was motivated
by the most common actions that our observed
designers wanted to prototype when designing a new
device. We have prototyped five virtual sensors that
serve as the basic elements for building interactions in
SketchSpace:

1. Grasp. When a designer picks up an object,
SketchSpace understands the object is being
grasped and how much of it is covered.

2. Touch. Designers can touch a single point on a
flat or curved surface. We limit this gesture to

Figure 3. A red highlight indicates that
SketchSpace is tracking the block of
wood and its virtual sensors are active.

Figure 4. A subset of the Mapping
Panel.

(a) The controls for the virtual tilt
sensor. The designer enables a sensor,
sets it to a relative or absolute value,
specifies its sensitivity, and designates
the key presses to be raised when it is
triggered. Similar controls for the other
virtual sensors are available.

(b) The control to add a virtual button.
The designer adjusts its position, size,
and sensitivity. Up to two buttons are
supported.

(a) (b)

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1989

single touch to simplify the complexity of
distinguishing natural grasps and multiple
touch points.

3. Position. This sensor expresses the three-
dimensional position of an object as a designer
manipulates it. In general, it represents spatial
information such as position in three
dimensions, tilt around its horizontal and
vertical axis, and rotation around its z-axis.

4. Proximity. This sensor expresses the spatial
relationship between two objects and how near
or far they are from each other. In Figure 6, for
example, the distance between the designer’s
hand and flexible material is known. In
general, this gesture enables new types of
proximity-based interaction to be explored.

5. Deformation. A designer reforms an object’s
surface geometry dynamically. A piece of
paper, for example, can be reshaped to
express a convex or concave bend.

Mapping Gestures to Interface Actions
Each of these sensor streams must be mapped to
specific actions in the designer’s workflow. The Mapping
Panel provides an overview of input behavior and, for
each virtual sensor, shows its value, mapping rules,
and the corresponding action the rule triggers (see
Figure 4). We currently map all our actions to keyboard
and mouse events, which make it possible to easily
control most desktop applications. Like BOXES [6], the
designer specifies the trigger condition and the key or
mouse event that is sent to the active desktop
application. Although specifying these standardized key

encodings [10] introduces some overheard, it allows
the designer to control any application on the fly
without using any specialized programming interface.

Usage Scenario
To illustrate how designers work with SketchSpace, we
present the exploration of a tilt-based mouse device
and an interactive sketch of a bendable display.

Sketching Mouse Interactions
With a non-functioning prototype of a new tilt-enabled
mouse in hand, the lead industrial and interaction
designers use SketchSpace to quickly try out new
interactions. Using the Mapping Panel, the designers
map its 2D position to the desktop cursor and place a
virtual button on its surface (see Figure 5). To get a
feel for the tilt interactions, they decide to map the
mouse’s virtual tilt sensor to horizontal panning in
Microsoft’s WorldWide Telescope. As they tilt the
mouse, they monitor the sensor value in the Mapping
Panel. Iteratively, they tweak the sensitivity to indicate
when the mouse is sufficiently tilted. To pan left, the
designers type “LEFT” in the mapping text field to
indicate a left key press should be raised when this rule
is triggered. This process is repeated until tilting of the
mouse pan Microsoft’s WorldWide Telescope in every
direction.

Sketching a Bendable Display
SketchSpace also simplifies sketching interactions for
emerging technologies. Gummi [12] presents a
bendable hardware prototype that simulates the use of
a flexible credit card sized display. To explore similar
interactions, a designer finds a flexible material and
manipulates its while monitoring the Mapping Panel’s
virtual bend sensor (see Figure 6). The designer uses

Figure 5. A designer adds a virtual
button to the mouse prototype and then
explores tilt-based interactions.

Figure 6. An everyday flexible
material, such as a Mousepad, is used
to quickly explore the combination of
bending and tilting interactions. Note
that the projected color hue can
change with the tilt of the device.

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1990

Microsoft’s WorldWide Telescope and bends the
material to zoom in and out. Using the tilt operations
from the last scenario, the designer navigates galaxies
by combining bending and tilting interactions.

Implementation
SketchSpace’s is a modified version of LightSpace [14].
It is implemented in C# in a Windows 7 environment
and uses LightSpace’s libraries to acquire and process
depth data. Our single camera and projector setup is
sampled at 50 Hz and calibrated in a single 3D
coordinate system [14]. A grayscale image represents
the sampled depth data and computer vision
techniques use this image to identify and track up to
two objects at a time. Once identified, an object’s
surface geometry is used to infer input behaviors and
generate virtual sensor streams for each object.

From Input Behaviors to Virtual Sensors
To sense an object’s input behaviors, the system
thresholds the depth image and performs connected
component labeling [14]. The position of a sufficiently
large component indicates a potential object. From the
component’s bounding box, we extract the object’s
depth data and use this to generate a 3D surface mesh.
Using the mesh, we calculate an object’s volume, 3D
position, and infer its rotation around its local Z-axis. A
tracking engine compares these values to an index of
previous values and generates a candidate match.

After an object is matched, we calculate its tilt using a
least squares plane-fitting approach [14]. At this point,
the object’s three-dimensional position, rotation, and
tilt are known. After this, curvature is computed by
calculating the second derivative on the mesh using its

surface normals. The result is a grayscale image that
maps degree of curvature to pixel brightness.

Touch
Sensing touch requires (1) segmenting the designer’s
hand (see Figure 7) and (2) knowing when a fingertip
deflects a surface. In SketchSpace’s setup, the closely
positioned Kinect floods the workspace with infrared
light. Skin is a bright reflector of infrared light and is
easily thresholded.

To sense touch, we sense a predictable pattern in the
curvature at the boundary between a fingertip and
object. After a dwell time of 500 ms, a touch event is
raised. To reduce false positives, we confirm the
fingertip’s presence by indexing it in the segmented
hand image. Unlike Wilson’s use of depth sensing to
sense touch [15], we do not require a static
background model of the touch surface. Relaxing this
requirement allows us to sense touch on moving
objects. However, we currently limit our approach to a
single touch point as natural grasping gestures interfere
with multi-touch sensing.

Discussion & Conclusion
While we designed SketchSpace with detailed feedback
from the interaction and industrial designers, it is still a
work in progress. We plan to deploy SketchSpace to the
rapid prototyping shop in the Microsoft’s Hardware
group, and observe it in use when designing new
designs. We would also like to more formally evaluate
our prototype to gather feedback from designers about
its efficacy as an interactive sketching tool.

Also, early informal feedback from designers indicated
that they would like to render richer content on their

Figure 7. Skin densely reflects the
infrared light emitted by the Kinect. We
threshold the raw infrared image (a) and
use median filtering and blurring to
locate the hand (b). Although smaller
candidates are sometimes found (red
boxes), they are easily ignored.

(a)

(b)

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1991

prototypes. At present, SketchSpace only projects
simple visual feedback onto the device to indicate
tracking and virtual buttons; however, most of the
feedback the user gets from seeing the actions
performed in the desktop application. We would like to
extend our work to allow for interactive content to be
located on the device, much like the work of Nam et al.
[11] and Akaoka and Vertegaal [1]. This would allow
the designer to render images, video, and trigger
complex visual feedback, and enable deeper design
exploration of physical prototypes.

Finally, imbuing passive material with virtual sensors
has the potential to infer more abstract forms of
interaction. Analyzing the depth data in a designer’s
studio space could reveal, for example, whether
someone has entered a room, how many people are
present, and how many times someone has opened or
closed their laptop. Designing interactions for this level
of sensing is a rich area for future exploration.

References
[1] Akaoka, E. and Vertegaal, R. DisplayObject:
Prototyping Functional Physical Interfaces on 3D
Styrofoam, Paper, or Cardboard Models. In Proc. of
ACM TEI’10. 49-56.

[2] Ballagas, R., Memon, F., Reiners, R., and Borchers,
J. iStuff Mobile: Rapidly Prototyping New Mobile Phone
Interfaces for Ubiquitous Computing. In Proc. of ACM
SIGCHI’07. 1107-1116.

[3] Buxton, B. Sketching User Experiences: Getting the
Design Right and the Right Design. Morgan Kaufmann,
San Francisco, CA, 2007.

[4] Gallant, D., Seniuk, A., and Vertegaal, R. Towards
More Paper-like Input: Flexible Input Devices for
Foldable Interactions Styles. In Proc. of ACM UIST’08.
283-286.

[5] Hartmann, B., Klemmer, S. R., Bernstein, M.,
Abdulla, L., Burr, B., Robinson-Mosher, A., and Gee, J.
2006. Reflective physical prototyping through
integrated design, test, and analysis. In Proc. of ACM
UIST '06. 299-308.

[6] Hudson, S. and Mankoff, J. Rapid Construction of
Functioning Physical Interfaces from Cardboard,
Thumbtacks, Tin Foil and Masking Tape. In Proc. of
ACM UIST’06. 289 – 298.

[7] Kirsh, D. and P. Maglio. On distinguishing epistemic
from pragmatic action. Cognitive Science 18. pp. 513-
49, 1994.

[8] Knörig, A., Wettach, R., and Cohen, J. Fritzing – A
Tool for Advancing Electronic Prototyping for Designers.
In Proc. of ACM TEI’09. 351-358.

[9] Lee, J.C., Avrahami1, D., Hudson, S.E., Forlizzi, J.,
Dietz, P.H., Leigh, D. The Calder Toolkit: Wired and
Wireless Components for Rapidly Prototyping
Interactive Devices. In Proceedings of ACM DIS’04.
167-175

[10] http://msdn.microsoft.com/en-
us/library/system.windows.forms.sendkeys.send.aspx.
Last accessed January 14, 2011.

[11] Nam, T., and Lee, W. Integrating Hardware and
Software: Augmented Reality Based Prototyping
Method for Digital Products. In Extended Abstracts of
ACM CHI’03. 956 – 957.

[12] Schwesig, C., Poupyrev, I. and Mori, E. Gummi: A
Bendable Computer. In Proc. of ACM CHI;04. 263-270.

[13] Villar, N. and Gellersen, H. A Malleable Control
Structure for Softwired User Interfaces. In Extended
Abstracts. of ACM TEI’07. 49-56.

[14] Wilson, A., and Benko, H. Combining Multiple
Depth Cameras and Projectors for Interactions On,
Above, and Between Surfaces. In Proc. of ACM UIST’10.
273-282.

[15] Wilson, A. Using a Depth Sensor as a Touch
Sensor. In Proc. of ACM ITS’10. 69-72

CHI 2011 • Work-in-Progress May 7–12, 2011 • Vancouver, BC, Canada

1992

